RFE:递归特征消除
递归特征消除(Recursive Feature Elimination,简称RFE)是一种常见的特征选择技术。该方法通过反复构建模型并剔除重要性较低的特征,逐步筛选出最优特征子集,广泛应用于数据分析、机器学习和模式识别等多个领域。使用缩写RFE便于书写和交流,有助于提升专业场景下的表达效率。
Recursive Feature Elimination具体释义
Recursive Feature Elimination的英文发音
例句
- Support vector machine recursive feature elimination ( SVM-RFE ) is one of the most efficient feature selection algorithms.
- SVM-RFE是一种基于支持向量机的特征选择算法,该算法也是一种非常有效的方法。
- This divide-and-conquer framework elegantly conquers the disadvantages of Support Vector Machine Recursive Feature Elimination(RFE) ( SVM-RFE ), such as high computational complexity, low generalization ability.
- 这种分而治之的策略有效解决了支持向量机迭代特征剔除算法(SVM-RFE)在高维数据中推广能力差、计算复杂度高等问题。
- Based on analysis to the basic model of speech production and voice transformation, vocal tract parameters and statistics of speech signals are extracted. Sensitive features are selected as classifying features by support vector machine recursive feature elimination method.
- 该算法提取语音信号的声道参数以及相关的信号统计量,并通过支持向量机递归特征消除(RFE)法,选择对语音变换比较敏感的特征进行语音变换检测。
- The proposed algorithm sets up the initial parameter value using the 2-norm distance between the samples, and then updates this value automatically according to the changed dataset caused by the recursive feature elimination. 4.
- 算法首先利用样本之间的2范数距离设置初始参数值,然后根据进行递归特征消去后重构的样本对核参数进行自动运算更新。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若RFE词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。