DWNN:动态小波神经网络
“动态小波神经网络”(Dynamic Wavelet Neural Networks,简称DWNN)是一种将小波分析与神经网络结合的前沿智能算法模型。它常被简写为DWNN以方便快速书写和学术交流,在信号处理、模式识别、系统建模等多个综合领域有着广泛应用,属于未严格限定应用范围但具有广泛适应性的技术类别。
Dynamic Wavelet Neural Networks具体释义
Dynamic Wavelet Neural Networks的英文发音
例句
- Study of Helicopter Dynamic Model Based on Recurrent Wavelet Neural Networks
- 基于递归小波网络的直升机动力学模型研究
- A quick and simple method for mapping a multi-input multi-output ( MIMO ) dynamic system is presented by combination of several multi-input single-output wavelet neural networks ( WNN ), and an initialization method of high efficiency is utilized to shorten the train time.
- 提出将多个多输入单输出小波神经网络(WNN)组合构造多输入多输出(MIMO)的WNN来逼近MIMO非线性动态系统的快速而简单的实现方法,并采用高效率的初始化方法缩短了训练时间。
- Because of the inner memory of feedback unit, the dynamic wavelet neural network performs well in learning long-term dependences and can overcome the curse of dimension problem which often occurs in wavelet networks to some degree.
- 由于反馈单元的内部记忆能力,动态神经网络具有对长时相关的预测能力并能在一定程度上克服小波神经网络的维数灾难问题;
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若DWNN词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。