TDT:传统决策树

“传统决策树”(Traditional Decision Trees,常缩写为 TDT)是一种经典的数据分析与机器学习方法,广泛应用于分类与预测任务中。该缩写形式便于书写和日常交流,常见于多学科领域的文献或讨论中,尤其当涉及未明确分类的综合性应用场景时。其核心思想是通过树状结构模拟决策过程,以清晰直观的方式呈现数据的内在规律。

Traditional Decision Trees具体释义

  • 英文缩写:TDT
  • 英语全称:Traditional Decision Trees
  • 中文意思:传统决策树
  • 中文拼音:chuán tǒng jué cè shù
  • 相关领域tdt 未分类的

Traditional Decision Trees的英文发音

例句

  1. A generalized decision tree was developed to effectively store, prune and use large amounts of meaningful rules used by various classification algorithms which can not be managed by traditional decision trees.
  2. 为了将传统的决策树无法管理的、由各种分类算法所发现的大量的有意义的规则进行有效的存储、剪裁和使用,提出了广义决策树结构。
  3. This paper summarizes the fundamentals and advantages of traditional decision trees, and the limits of decision trees under data mining environment where magnitude data sets are used.
  4. 概述了传统决策树(TDT)方法的基本原理和优越性,指出了该方法应用于超大数据集的数据挖掘环境时的局限性;
  5. At the same time, the numerous scholars have introduced the fuzzy set theory into the decision tree domain, in order to overcome the incisive boundary problem that traditional decision trees have.
  6. 同时,众多的学者把模糊集合理论引入了决策树领域,以克服传统决策树(TDT)存在的尖锐边界问题。