TDT:传统决策树
“传统决策树”(Traditional Decision Trees,常缩写为 TDT)是一种经典的数据分析与机器学习方法,广泛应用于分类与预测任务中。该缩写形式便于书写和日常交流,常见于多学科领域的文献或讨论中,尤其当涉及未明确分类的综合性应用场景时。其核心思想是通过树状结构模拟决策过程,以清晰直观的方式呈现数据的内在规律。
Traditional Decision Trees具体释义
Traditional Decision Trees的英文发音
例句
- A generalized decision tree was developed to effectively store, prune and use large amounts of meaningful rules used by various classification algorithms which can not be managed by traditional decision trees.
- 为了将传统的决策树无法管理的、由各种分类算法所发现的大量的有意义的规则进行有效的存储、剪裁和使用,提出了广义决策树结构。
- This paper summarizes the fundamentals and advantages of traditional decision trees, and the limits of decision trees under data mining environment where magnitude data sets are used.
- 概述了传统决策树(TDT)方法的基本原理和优越性,指出了该方法应用于超大数据集的数据挖掘环境时的局限性;
- At the same time, the numerous scholars have introduced the fuzzy set theory into the decision tree domain, in order to overcome the incisive boundary problem that traditional decision trees have.
- 同时,众多的学者把模糊集合理论引入了决策树领域,以克服传统决策树(TDT)存在的尖锐边界问题。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若TDT词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。