DFE:鉴别特征提取
“Discriminative Feature Extraction”(DFE)是一种常见于计算机科学特别是数据库领域的技术术语,其中文含义为“鉴别特征提取”。该缩写形式被广泛用于科研论文和技术文档中,旨在简化书写流程并提升信息传递的效率。通过特征提取技术,系统能够从原始数据中识别并筛选出最具区分度的关键信息,从而有效提升数据分析与模式识别的准确性。
Discriminative Feature Extraction具体释义
Discriminative Feature Extraction的英文发音
例句
- The experimental results show that the discriminative feature extraction is superior to the classical MFCC.
- 实验结果表明,基于新特征的语言辨识系统的性能优于基于MFCC参数的系统性能,提高了系统的语言辨识率。
- In feature extraction, a new feature extraction algorithm base on discriminative training of GMM called discriminative feature extraction ( DFE ) is applied in language identification. Classical feature extraction model is independent of the design of the classifiers.
- 在特征提取模块,本文将一种新的基于GMM模型区分性训练算法的特征提取方法应用到语言辨识系统。
- This dissertation focuses on the key problems, such as the feature extraction in text classification, clustering analysis, and the query expansion, and proposes the novel algorithms as follows. ( 1 ) Discriminative Semantic Analysis based Text Feature Extraction.
- 本文针对文本挖掘中的若干关键问题,例如文本分类的特征抽取、聚类分析以及查询扩展等,展开了如下的研究:(1)基于鉴别语义分析的文本特征抽取。
- After augmentation, the discriminative information is successfully strengthened at some extent, which greatly benefits the follow-up processes : feature extraction and classification.
- 经过样本扩充,鉴别信息得到了一定的强化,更利于特征抽取和分类识别。
- This makes the classifier, which based on the discriminative function, can only judge and analyze the ERPs signal by extracting the its features, and the feature extraction is directly related to the accuracy of the classification results.
- ERPs信号的数据维数往往有几万维之高,基于判别函数的分类器,需要在对其进行特征提取的情况下才能加以判别分析,而特征提取的好坏又直接关系到分类结果的准确性。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若DFE词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。