WLLN:弱大数定律

弱大数定律(英文全称“Weak Law of Large Numbers”,常缩写为WLLN),是概率论与数理统计中的一项基本定理,广泛应用于数学、统计学及相关科研领域。采用缩写WLLN既便于书写,也有助于在学术论文、教材和专业交流中提高表达效率。该定律描述了在大量独立重复试验中,样本均值依概率收敛于期望值的统计规律,是理解大样本理论的重要基础。

Weak Law of Large Numbers具体释义

  • 英文缩写:WLLN
  • 英语全称:Weak Law of Large Numbers
  • 中文意思:弱大数定律
  • 中文拼音:ruò dà shù dìng lǜ
  • 相关领域wlln 数学

Weak Law of Large Numbers的英文发音

例句

  1. A weak law of large numbers for the weighted sums of non-identically distributed NA random matrix sequences is studied.
  2. 研究了不同分布NA序列加权和最大值的弱大数定律(WLLN),推广了前人的结果。
  3. This note is devoted to introduce the concept of dominated random sequence and give a weak law of large numbers for dependent random sequence.
  4. 引入受控随机序列的概念,给出了独立随机序列的一个弱大数定律(WLLN)。
  5. We extend the large deviation principle by proving the local uniform lower bound. We also give a new variational formula for the principal eigenvalue and a strong version of weak law of large numbers.
  6. 然后我们证明了局部一致大偏差下界,给出了新的主特征值变分公式和加强形式的弱大数定律(WLLN)。
  7. The Weak Law of Large Numbers(WLLN) for Weighted Sums of Random Variable Sequences of Independent and Identical Distribution
  8. 独立同分布随机变量列加权和的弱大数定律(WLLN)
  9. The Euler's Weak Law of Large Numbers(WLLN) in Banach Space
  10. Banach空间中的Euler弱大数定律(WLLN)