DDL:数据驱动学习
“数据驱动学习”(Data Driven Learning,简称DDL)是一种在教育和社会领域中广泛应用的方法论。为了方便书写和使用,通常将其缩写为DDL。该术语强调利用数据分析来指导学习过程和教学策略的制定,旨在提升学习效率和成果的科学性。
Data Driven Learning具体释义
Data Driven Learning的英文发音
例句
- Being inspired by the current research, with the theoretical framework composed of the Constructivist Learning Theory and Data Driven Learning(DDL) and the combination of qualitative and quantitative research methods, the purpose of the research is to explore the effects of collaboration in parallel corpora-based translation teaching.
- 在现有研究的启发下,本研究以建构主义学习理论和数据驱动学习(DDL)理论为理论研究框架,采用定性和定量相结合的研究方法,探讨平行语料库在翻译教学中的协作应用。
- Data Driven Learning(DDL) & New Orientation in EFL Teaching
- 数据驱动学习(DDL)&英语教学模式的新动向
- A data driven adaptive learning algorithm is proposed in this paper, which determines the target aspect sector boundary based on a multivariate Gaussian statistical data model and an iteration algorithm, and the target aspect sector number can be determined simultaneously.
- 基于联合高斯分布的数据模型通过迭代算法来确定数据划分边界,并自动确定目标角域个数。
- Discussion on inductive method and data - driven language learning method
- 论归纳法和依照数据处理的语言学习方法
- Paper accounts the concept, background and application scope of data driven, the iterative learning algorithm, and verifies the convergence of the control method.
- 本文详细叙述了数据驱动的概念、背景及应用范围,并阐述了迭代学习控制方法,进一步验证了该控制方法的收敛性。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若DDL词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。