IMLE:迭代极大似然估计

迭代极大似然估计(Iterative Maximum Likelihood Estimation,简称IMLE)是一种常用的参数估计方法,其名称常缩写为IMLE,以方便书写与交流。该方法通过多次迭代逐步优化似然函数,从而获得更为精确的参数估计结果。IMLE广泛应用于统计学、机器学习及工程学等多个综合领域,是处理复杂模型参数估计问题的有效工具。

Iterative Maximum Likelihood Estimation具体释义

  • 英文缩写:IMLE
  • 英语全称:Iterative Maximum Likelihood Estimation
  • 中文意思:迭代极大似然估计
  • 中文拼音:dié dài jí dà sì rán gū jì
  • 相关领域imle 未分类的

Iterative Maximum Likelihood Estimation的英文发音

例句

  1. After comparing the advantages and disadvantages of several positioning methods, the author study a modified iterative maximum likelihood estimation algorithm and analyzes its advantages and disadvantages, then a hybrid iterative algorithm is proposed, and compares its location algorithm with the traditional one.
  2. 研究了一种改进型的迭代最大似然估计算法并分析了它的优缺点,在此基础上提出了一种混合迭代算法,并且将其与传统的定位算法相比较。
  3. Being modeled as sinusoidal signals, the RFI can be greatly suppressed by the method of iterative Maximum Likelihood ( ML ) estimation.
  4. 基于多正弦波模型的选代最大似然(ML)法能够在很大程度上抑制RFI。
  5. Popularly used iterative algorithms, such as maximum likelihood estimation, is limited in estimating the linear structural equation model.
  6. 利用极大似然法或者最小二乘法等对线性结构方程进行估计时,会受到一定的限制。
  7. Methods EM algorithm was employed to construct an iterative formula for solving the maximum likelihood estimation ( MLE ) of parameters of Gamma distribution with interval data, whereby we can estimate the distribution parameters of SARS incubation period with interval data.
  8. 方法采用EM算法构造出求解含区间数据Gamma分布参数极大似然估计的迭代公式,并应用于SARS潜伏期分布的拟合。
  9. In this approach the Newton iterative method is utilized to solve this maximum likelihood estimation problem, and the initial values are assigned using the Kalman predictor.
  10. 其中利用牛顿迭代法解决最大似然估计问题,并且利用Kalman预报器为牛顿迭代赋初值。