BOW:词袋
“词袋”(Bag of Words,常缩写为BOW)是计算机与自然语言处理领域中的一种常用文本表示方法。通过将文本视作词汇的集合而忽略语序和语法结构,它能够高效地将文档转化为向量形式,便于后续的机器学习或文本分析任务。由于其简洁高效的特点,BOW模型在信息检索、文本分类等场景中被广泛使用。
Bag Of Words的英文发音
例句
- In most of the research on topic tracking, texts are represented in " bag of words ".
- 话题追踪的很多研究工作都是使用Bagofwords来表示文本。
- It is relatively simple and easy to implement and has a fast identification speed. Secondly, on the basis of the traditional coding of the Bag of Words model, this thesis proposes a method which based on sparse coding representation of the models local image feature descriptor.
- 其次,在研究传统词包模型中编码方式的基础上,本文提出了一种基于车型图像局部特征描述子的稀疏编码表示方法。
- This is because traditional text representation methods are based on word of bag model ( WOG ), which relies on matching between words or phrases.
- 这是因为传统的机器学习方法大多数是基于词袋(BOW)(Bagofwords)模型,即依靠词或短语之间的匹配,面对词汇的多样性、多义性,它就显得无能无力了。
- BoW ( Bag of Words ) technology originated in document retrieval systems and got a great success. SIFT feature extraction technique was proposed by the D.G.Lowe 1999, concluded in 2004, and obtained good performance in the image retrieval area.
- BoW技术起源于文档检索系统,并在文档检索领域取得了成功;SIFT特征提取技术由D.G.Lowe1999年提出,2004年完善总结,在图像检索领域获得了不错的检索效果。
- The Bag of Words framework based on SIFT was analysised. The support vector machine was used for feature selection point of the visual vocabulary. The experiments show better performance than the k-means clustering algorithm.
- 以此为基础,研究了SIFT的词袋(BOW)算法框架,通过支持向量机选择视觉词汇的特征点,实验表明,性能优于k均值聚类算法。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若BOW词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。