BMA:贝叶斯模型平均
“贝叶斯模型平均”(Bayesian Model Averaging,简称BMA)是一种在数学和统计学领域广泛应用的模型选择与组合方法,尤其常见于各类科学研究中。使用缩写BMA有助于简化书写,提升学术交流与文献引用的效率。
Bayesian Model Averaging具体释义
Bayesian Model Averaging的英文发音
例句
- Bayesian model averaging was used to combine the results across models and to provide a measure of uncertainty that reflects the choice of model and the sampling variability.
- 贝叶斯模型平均(BMA)法用来综合各模型的结果并提供一种反映模型选择和抽样变异性的不确定性度量。
- Due to the uncertainty of the precipitation, the Bayesian Model Averaging(BMA) ( BMA ) is employed as the ensemble model for certain period, which can release both deterministic and probabilistic forecast.
- 特别针对径流受降雨因素影响较大的阶段,其预报不确定性增强的特点,引入贝叶斯平均(BMA)组合预报模型,可同时发布确定性预报与概率预报。
- According to analyzing classical Structure Learning methods ( K2 and MCMC algorithms ), an improved Bayesian Networks Structure Learning algorithm is proposed which combined with the merits of above two algorithms and the idea of model averaging.
- 通过分析两种经典的结构学习方法(K2和MCMC算法)的基本思想,将两种算法的优点和模型平均的思路结合起来,提出一种改进的贝叶斯网络结构学习算法。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若BMA词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。