LSM:最小二乘法
“最小二乘法”(Least Squares Method,简称LSM)是一种广泛应用于数学及各类科学领域的经典优化算法。该方法通过最小化误差平方和来寻找数据的最佳函数匹配,在统计分析、工程建模和机器学习中尤为常见。使用LSM作为缩写便于学术交流与文献书写,兼顾简洁性与准确性。
Least Squares Method具体释义
Least Squares Method的英文发音
例句
- A track-association algorithm based on the limited frames Least Squares method is put forward.
- 针对星空图像中运动点目标轨迹难于提取的问题,提出了有限帧最小二乘轨迹关联算法。
- According to the characteristics of data collection, generalized least squares method was used to calibrate model.
- 根据采集数据的特点,采用广义最小二乘法(LSM)标定模型。
- Then partial least squares method was used for selecting the effective wavelength interval of illumination.
- 然后应用偏最小二乘法(LSM)选择合适的光源波段间隔。
- Prominent among the various techniques that can help to extrapolate past date into future trends are the following : time series, least squares method, exponential smoothing, regression and correlation.
- 由历史数据推测未来趋势的众多方法中较突出的有:时间序列法、最小平方法、指数平滑法、回归分析和相关分析。
- Besides, the history of least one-power method and least squares method, multiple solutions and the various effects of outliers on the regression line are discussed.
- 论述了最小一乘法与最小二乘法(LSM)的历史及其在解的多重性、突出点对回归线影响等方面的差异。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若LSM词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。