LSM:最小二乘法

“最小二乘法”(Least Squares Method,简称LSM)是一种广泛应用于数学及各类科学领域的经典优化算法。该方法通过最小化误差平方和来寻找数据的最佳函数匹配,在统计分析、工程建模和机器学习中尤为常见。使用LSM作为缩写便于学术交流与文献书写,兼顾简洁性与准确性。

Least Squares Method具体释义

  • 英文缩写:LSM
  • 英语全称:Least Squares Method
  • 中文意思:最小二乘法
  • 中文拼音:zuì xiǎo èr chéng fǎ
  • 相关领域lsm 数学

Least Squares Method的英文发音

例句

  1. A track-association algorithm based on the limited frames Least Squares method is put forward.
  2. 针对星空图像中运动点目标轨迹难于提取的问题,提出了有限帧最小二乘轨迹关联算法。
  3. According to the characteristics of data collection, generalized least squares method was used to calibrate model.
  4. 根据采集数据的特点,采用广义最小二乘法(LSM)标定模型。
  5. Then partial least squares method was used for selecting the effective wavelength interval of illumination.
  6. 然后应用偏最小二乘法(LSM)选择合适的光源波段间隔。
  7. Prominent among the various techniques that can help to extrapolate past date into future trends are the following : time series, least squares method, exponential smoothing, regression and correlation.
  8. 由历史数据推测未来趋势的众多方法中较突出的有:时间序列法、最小平方法、指数平滑法、回归分析和相关分析。
  9. Besides, the history of least one-power method and least squares method, multiple solutions and the various effects of outliers on the regression line are discussed.
  10. 论述了最小一乘法与最小二乘法(LSM)的历史及其在解的多重性、突出点对回归线影响等方面的差异。