BVS:贝叶斯变量选择
贝叶斯变量选择(Bay叶斯变量选择ayesian Variable Selection,简称BVS)是一种重要的统计建模方法,广泛应用于机器学习、生物信息学、计量经济学等多个交叉学科领域。在文献和学术交流中,BVS这一缩写形式被广泛使用,以简化书写并提高表述效率。它通过贝叶斯统计框架,实现对预测模型中变量的自动筛选与权重评估,有助于提升模型的解释性和预测精度。
Bayesian variable selection具体释义
Bayesian variable selection的英文发音
例句
- Recently, Iwata et al. ( 2007 ) proposed a Bayesian variable selection(BVS) method to map multi-QTL.
- 最近,Iwataetal.(2007)提出了结合贝叶斯变量选择(BVS)方法来定位多QTL。
- In such case, an approach of Bayesian variable and model selection is proposed by using the stochastic search technique based on GLM.
- 在这种情形下,在GLM的框架下提出了基于随机搜索技术的贝叶斯变量与模型选择方法。
- As for fractional factorial experiment design with non-normal responses, taking the deviance information criterion ( DIC ) as the assessment criterion of Bayesian models, we propose an approach of two-stage Bayesian variable and model selection by using MCMC method and stepwise iterative optimization technique.
- 针对非正态响应的部分因子试验,以偏差信息准则(devianceinformationcriterion,DIC)为贝叶斯模型的评估准则,运用MCMC方法与迭代优化技术构建了一种两阶段的贝叶斯变量与模型选择方法。
- Bases on the coupling between emergencies and supply disturbances, the establishment of Bayesian networks requirements, builds disturbance of the supply chain Bayesian networks, including the node variable selection and topology learning.
- 最后,基于突发事件和供应扰动两者间的耦合关系,根据贝叶斯网络的建立要求,构建了供应扰动风险事件链的贝叶斯网络,其中包括节点变量的选取和拓扑结构的学习。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若BVS词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。