FDE:泛函差分方程

泛函差分方程”在学术文献和工程应用中常被缩写为FDE,这种简称有助于简化书写过程,提高使用效率。FDE广泛出现在数学、物理学及控制系统等综合性研究领域,目前尚未有统一的学科分类。作为一个关键术语,它描述了涉及函数差分的数学方程,在理论分析和实际问题求解中都占有重要地位。

Functional Difference Equation具体释义

  • 英文缩写:FDE
  • 英语全称:Functional Difference Equation
  • 中文意思:泛函差分方程
  • 中文拼音:fàn hán chā fēn fāng chéng
  • 相关领域fde 未分类的

Functional Difference Equation的英文发音

例句

  1. By using the contraction mapping principle, the boundary value problems for a second order functional difference equation are investigated. Existence and uniqueness results are obtained.
  2. 利用压缩映照定理,研究了一个二阶泛函差分方程(FDE)边值问题,得到存在和唯一性定理。
  3. The existence of periodic solution to nonlinear functional difference equation is considered by using the topological degree, and a periodic solution of this problem is obtained.
  4. 利用拓扑度理论对一类非线性泛函差分方程(FDE)周期解的存在性进行了讨论,得到该问题周期解的一个存在定理。
  5. Existence of positive periodic solutions for a functional difference equation
  6. 一类泛函差分方程(FDE)的正周期解存在性
  7. Multivariable predictive functional control based on difference equation, which has more general applicability, is presented.
  8. 基于差分方程模型推导了多变量预测函数控制算法,使其具有更加广泛的适用性。
  9. This paper mainly studies three serious of predator-prey systems with functional response. Using analytical method of difference equation and coincidence degree theory, we obtain the persistence of the population and the existence condition of periodic solution.
  10. 本文针对三类具有功能性反应的离散捕食-被捕食模型,利用差分方程分析的方法及重合度理论,给出了种群的持久生存及周期解的存在条件。