MLEM:最大似然期望最大化
“最大似然期望最大化”(Maximum Likelihood Expectation Maximization,简称MLEM)是一种广泛应用于统计学和机器学习领域的经典估计算法。为便于书写和讨论,该名称常被缩写为MLEM,常见于各类综合性研究文献中。其核心思想通过迭代优化,逐步逼近参数的最大似然估计值,在数据聚类、图像重建等众多未明确分类的相关场景中具有重要作用。
Maximum Likelihood Expectation Maximization具体释义
Maximum Likelihood Expectation Maximization的英文发音
例句
- In this paper, according to the characters of projection data, a scatter correction method which uses maximum likelihood expectation maximization ( MLEM ) algorithm based on poisson model is proposed.
- 我们根据投影图像的分布特征,基于泊松数据模型,利用最大似然期望值法(Maximumlikelihoodexpectationmaximization,MLEM)对正弦图进行散射校正。
- Some key aspects in the Bayesian Maximum Likelihood - Expectation Maximization Method ( ML - EM ) for positron emission tomography ( PET ) imaging were investigated. We present a new forecasting model of fuzzy neural network combined with Expectation Maximization method.
- 从ML-EM重建算法入手,分析了贝叶斯模型的一些关键点.将期望最大化(EM)聚类算法和神经网络相结合,提出了一种基于相空间重构技术的EM聚类模糊神经网络预测模型。
- Maximum likelihood estimation ( MLE ) based on the expectation maximization ( EM ) algorithm is proposed for statistic analysis of hard failure mode. Results turns out that, the EM algorithm are more accurate and stable than the direct maximum algorithm which is used generally.
- 提出了采用基于EM算法的极大似然估计(MLE)方法对突发型失效模式进行统计,结果表明,EM算法比传统的直接极大化算法精度更高、稳定性更好。
- Firstly, the dissertation puts forward a probability model of cover algorithm, and, with the help of maximum likelihood estimation of finite mixtures of models, optimizes the cover algorithm with the expectation maximization algorithm.
- 提出了覆盖算法的概率模型,并利用有限混合模型的极大似然拟合,用期望最大化算法对覆盖算法进行优化处理。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若MLEM词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。