EDR:有效降维
“有效降维”(Effective Dimension Reduction,简称EDR)是一种数据处理技术,广泛应用于综合科学研究领域,尚未有明确的学科分类。它旨在简化高维数据的复杂性,同时保留关键信息,从而提升分析和可视化的效率。通过EDR方法,研究人员能够更直观地理解复杂数据集,推动多学科应用的发展。
Effective Dimension Reduction具体释义
Effective Dimension Reduction的英文发音
例句
- Margin maximization feature weighting is an effective dimension reduction technique, and it is generally based on weighting techniques and similarity measure to construct their objective functions.
- 间距最大化特征选择技术是一种有效的维数约减技术,一般是基于加权技术和相似性度量构造目标函数。
- Collaborative filtering recommendation model based on effective dimension reduction and K-means clustering
- 一种结合有效降维(EDR)和K-means聚类的协同过滤推荐模型
- Therefore, the research on effective dimension reduction algorithm for data analysis on a low-dimensional space becomes a hotspot.
- 因此,研究有效的降维算法,寻求在低维上进行数据分析,成为数据挖掘研究热点。
- Some scholars think that the comprehensive evaluation method helps eliminate the overlapping information among various indicators, that the cumulated variance contribution ratio of the principal component reflects the credible degree of the comprehensive evaluation, and that the comprehensive evaluation method is effective to dimension reduction.
- 一些学者认为:主成分综合评价方法能消除指标之间的重复信息,主成分的累积方差贡献率代表综合评价的把握程度,主成分综合评价方法具有降维作用。
- According to the different ways of obtaining the effective features, dimension reduction can be realized by feature extraction and feature selection.
- 根据获取有效特征的方式不同,维数缩减可以通过特征提取和特征选择两种不同的过程来实现。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若EDR词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。