APDE:偏微分方程分析
“Analysis Partial Differential Equations”通常缩写为APDE,以便于快速书写和在跨学科讨论中使用。该术语广泛应用于数学、物理及工程等综合性研究领域,尤其适用于尚未明确分类的交叉研究方向。其中文含义直译为“偏微分方程分析”,特指对偏微分方程的理论性质、求解方法及其实际应用进行的系统性研究。
Analysis Partial Differential Equations具体释义
Analysis Partial Differential Equations的英文发音
例句
- The k-Hessian equation is a kind of very complicated fully nonlinear partial differential equation when k ≥ 2. It is a hard job to study the equation which need a wide knowledge, such as geometry, algebra, analysis, partial differential equations and so on.
- 当k≥2时,k-Hessian方程是一类复杂的完全非线性方程,对它的研究又是很有挑战的,需要深入了解几何,代数,分析,偏微分方程等各个领域的知识。
- In recent years, wavelet multi-resolution analysis and partial differential equations ( PDEs ) play active roles in many image processing fields. They have become two basic tools for image processing and computer vision.
- 近年来,以小波多分辨分析和偏微分方程(PDEs)方法为代表的数学工具活跃在图像处理的各个研究领域,它们已经成为研究图像处理和计算机视觉的两大基本工具。
- Microlocal Analysis of Nonlinear Partial Differential Equations
- 非线性偏微分方程的微局部分析
- By using the linearized analysis, the nonlinearizing partial differential equations are solved.
- 利用该方法,对含有辐射项的非线性微分方程进行了解析求解。
- Material inhomogeneity inherent in FGMs leads to great difficulties for mechanics analysis since the governing partial differential equations have variable coefficients.
- 功能梯度材料固有的材料性能不均匀性给力学分析带来了很大困难,使得基于弹性理论的问题解答成为求解一组变系数的偏微分方程,大大增加了求解的难度。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若APDE词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。