CVA:交叉验证准确性
“交叉验证准确性”是机器学习领域中评估模型泛化能力的重要指标,常被简称为CVA。这一缩写形式在软件开发、数据分析等计算机相关场景中广泛使用,能够有效提升文档撰写和团队沟通的效率。通过交叉验证方法,可以更准确地衡量模型在未知数据上的表现,是模型优化过程中不可或缺的参考依据。
Cross-Validation Accuracy具体释义
Cross-Validation Accuracy的英文发音
例句
- After spectrum 9 point smoothing, we establish SVM mathematical model in the best condition. The cross-validation accuracy is 86.3636 %. The predicted rate prediction set reached 93.3 % correctly.
- 利用9点平滑预处理方法建立的SVM模型对CS进行溯源分析,模型的交互验证准确度为86.3636%,验证集的预测结果正确率达到93.3%。
- The equivalent relationships of the tests were determined by equating sample, Using the cross-validation sample, the equating accuracy was evaluated by the index of Root Mean Squared Difference ( RMSD ).
- 三测验的等值关系式通过等值样本来确定,而各种等值方法的等值精确性和稳健性则由交互验证样本通过RMSD指标来评估。
- We have applied holdout method and 10-fold cross-validation method in the system. They estimate mainly the accuracy rate of the model.
- 本系统实现的是保持法和10折交叉确认法,主要是对生成的决策树模型进行准确率方面的评估。
- The cross-validation and external validation results showed that the model of powder had higher accuracy and precision than fresh leaf model, while the model of S / N performed better than SSN model.
- 对模型进行内部检验和外部检验的结果表明,鲜叶模型预测能力较差,粉末模型的准确度和精确度较高。
本站英语缩略词为个人收集整理,可供非商业用途的复制、使用及分享,但严禁任何形式的采集或批量盗用
若CVA词条信息存在错误、不当之处或涉及侵权,请及时联系我们处理:675289112@qq.com。